Placeholder Content Image

How satellites, radar and drones are tracking meteorites and aiding Earth’s asteroid defence

<p>On July 31 2013 a <a href="https://cneos.jpl.nasa.gov/fireballs/" target="_blank" rel="noopener">constellation of US defence satellites</a> saw a streak of light over South Australia as a rock from outer space burned through Earth’s atmosphere on its way to crash into the ground below.</p> <p>The impact created an explosion equivalent to about 220 tonnes of TNT. More than 1,500km away, in Tasmania, the bang was heard by detectors normally used to listen for <a href="https://www.dfat.gov.au/international-relations/security/asno/Pages/australian-ims-stations" target="_blank" rel="noopener">extremely low-frequency sounds</a> from illegal tests of nuclear weapons.</p> <p>These were two excellent indications that there should be a patch of ground covered in meteorites somewhere north of Port Augusta. But how could we track them down?</p> <p>My colleagues and I who work on the <a href="https://dfn.gfo.rocks/" target="_blank" rel="noopener">Desert Fireball Network (DFN)</a>, which tracks incoming asteroids and <a href="https://dfn.gfo.rocks/meteorites.html" target="_blank" rel="noopener">the resulting meteorites</a>, had a couple of ideas: weather radar and drones.</p> <p><strong>Eyes in space</strong></p> <p>Finding meteorites is not an easy task. There is a network of high-quality ground-based sensors called the <a href="https://gfo.rocks/" target="_blank" rel="noopener">Global Fireball Observatory</a>, but it only covers about 1% of the planet.</p> <p>The <a href="https://cneos.jpl.nasa.gov/fireballs/" target="_blank" rel="noopener">US satellite data</a> published by NASA covers a much larger area than ground-based detectors, but it only picks up the biggest fireballs. What’s more, they <a href="https://academic.oup.com/mnras/article/483/4/5166/5256650" target="_blank" rel="noopener">don’t always give an accurate idea of the meteor’s trajectory</a>.</p> <p>So, to have any chance to find a meteorite from these data, you need a little outside help.</p> <p><strong>Weather radars</strong></p> <p>In 2019, Australia’s Bureau of Meteorology started making its weather radar data <a href="https://www.openradar.io/" target="_blank" rel="noopener">openly available</a> to researchers and the public. I saw this as an opportunity to complete the puzzle.</p> <p>I combed through the record of events from the Desert Fireball Network and NASA, and cross-matched them with nearby weather radars. Then I looked for unusual radar signatures that could indicate the presence of falling meteorites.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=334&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=334&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=334&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=420&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=420&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/496384/original/file-20221121-22-iwtkve.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=420&amp;fit=crop&amp;dpr=3 2262w" alt="An annoyed aerial photo showing the locations of the Woomera radar station and the falling meteorites." /></a><figcaption><span class="caption">The Woomera weather radar station captured reflections from the falling meteorites.</span> <span class="attribution"><span class="source">Curtin University</span>, <span class="license">Author provided</span></span></figcaption></figure> <p>And bingo, the 2013 event was not too far from the Woomera radar station. The weather was clear, and the radar record showed some small reflections at about the right place and time.</p> <p>Next, I had to use the weather data to figure out how the wind would have pushed the meteorites around on their way down to Earth.</p> <p>If I got the calculations right, I would have a treasure map showing the location of a rich haul of meteorites. If I got them wrong, I would end up sending my team to wander around in the desert for two weeks for nothing.</p> <p><strong>The search</strong></p> <p>I gave what I hoped was an accurate treasure map to my colleague Andy Tomkins from Monash University. In September this year, he happened to be driving past the site on his way back from an expedition in the Nullarbor.</p> <p>Thankfully, Andy found the first meteorite within 10 minutes of looking. In the following two hours, his team found nine more.</p> <figure class="align-center "><img src="https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/496385/original/file-20221121-16-he3p7h.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=3 2262w" alt="Photo of several people walking through a desert field looking at the ground." /><figcaption><span class="caption">A field team from Monash University searched for meteorites in the strewn field.</span> <span class="attribution"><span class="source">Monash University</span>, <span class="license">Author provided</span></span></figcaption></figure> <p>The technique of finding meteorites with weather radars <a href="https://ares.jsc.nasa.gov/meteorite-falls/how-to-find-meteorites/" target="_blank" rel="noopener">was pioneered</a> by my colleague Marc Fries in the US. However, this is the first time it has been done outside the US NEXRAD radar network. (When it comes to monitoring airspace, the US has more powerful and more densely packed tech than anyone else.)</p> <p>This first search confirmed there were lots of meteorites on the ground. But how were we going to find them all?</p> <p>That’s where the drones come in. We used a method developed by my colleague Seamus Anderson to <a href="https://gfo.rocks/blog/2022/03/14/First_Meteorite_Found_with_Drone.html" target="_blank" rel="noopener">automatically detect meteorites from drone images</a>.</p> <p>In the end we collected 44 meteorites, weighing a bit over 4kg in total. Together they form what we call a “strewn field”.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=400&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/496386/original/file-20221121-13-qssltc.jpg?ixlib=rb-1.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=503&amp;fit=crop&amp;dpr=3 2262w" alt="An aerial view of a desert field with a black dot (a meteorite) highlighted by a yellow square." /></a><figcaption><span class="caption">A machine-learning algorithm identified meteorites from drone photos.</span> <span class="attribution"><span class="source">Curtin Uni</span>, <span class="license">Author provided</span></span></figcaption></figure> <p>Strewn fields <a href="https://onlinelibrary.wiley.com/doi/10.1111/maps.13892" target="_blank" rel="noopener">tell us a lot</a> about how an asteroid fragments in our atmosphere.</p> <p>That’s quite important to know, because the energy of these things is comparable to that of nuclear weapons. For example, the 17-metre asteroid that exploded over Chelyabinsk in Russia in 2013 produced an explosion 30 times the size of the bomb dropped on Hiroshima in 1945.</p> <p>So when the next big one is about to hit, it may be useful to predict how it will deposit its energy in our atmosphere.</p> <p>With new telescopes and better technology, we are starting to see some asteroids <a href="https://skymapper.anu.edu.au/news/great-balls-fire/" target="_blank" rel="noopener">before they hit Earth</a>. We will see even more when projects such as the <a href="https://www.lsst.org" target="_blank" rel="noopener">Vera Rubin Observatory</a> and the <a href="https://atlas.fallingstar.com" target="_blank" rel="noopener">Asteroid Terrestrial-impact Last Alert System (ATLAS)</a> are up and running.</p> <p>These systems might give us as much as a few days’ notice that an asteroid is heading for Earth. This would be too late to make any effort to deflect it – but plenty of time for preparation and damage control on the ground.</p> <p><strong>The value of open data</strong></p> <p>This find was only made possible by the free availability of crucial data – and the people who made it available.</p> <p>The US satellites that detected the fireball are presumably there to detect missile and rocket launches. However, somebody (I don’t know who) must have figured out how to publish some of the satellite data without giving away too much about their capabilities, and then lobbied hard to get the data released.</p> <p>Likewise, the find would not have happened without the work of Joshua Soderholm at Australia’s Bureau of Meteorology, who worked to make low-level weather radar data openly accessible for other uses. Soderholm went to the trouble to make the radar data <a href="https://www.go-fair.org/fair-principles/" target="_blank" rel="noopener">readily available and easy to use</a>, which goes well beyond the vague formulations you can read at the bottom of scientific papers like “data available upon reasonable request”.</p> <p>There is no shortage of fireballs to track down. Right now, we’re on the hunt for a meteorite that was spotted in space last weekend before <a href="https://www.nytimes.com/2022/11/19/science/fireball-asteroid-toronto-new-york.html" target="_blank" rel="noopener">blazing through the sky over Ontario, Canada</a>.<img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/194997/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /></p> <p><em>Writen by Hadrien Devillepoix. Republished with permission from <a href="https://theconversation.com/how-satellites-radar-and-drones-are-tracking-meteorites-and-aiding-earths-asteroid-defence-194997" target="_blank" rel="noopener">The Conversation</a>.</em></p> <p><em>Image: NASA</em></p>

Technology

Placeholder Content Image

Why dangerous asteroids heading to Earth are so hard to detect

<p>Earth is often in the firing line of fragments of asteroids and comets, most of which<span> </span><a href="https://theconversation.com/explainer-why-meteors-light-up-the-night-sky-35754">burn up</a>tens of kilometres above our heads. But occasionally, something larger gets through.</p> <p>That’s what happened off Russia’s east coast on December 18 last year. A<span> </span><a href="https://www.bbc.com/news/science-environment-47607696">giant explosion occurred above the Bering Sea</a><span> </span>when an asteroid some ten metres across detonated with an explosive energy ten times greater than the bomb dropped on Hiroshima.</p> <p>So why didn’t we see this asteroid coming? And why are we only hearing about its explosive arrival now?</p> <p><strong>Nobody saw it</strong></p> <p>Had the December explosion occurred near a city – as<span> </span><a href="https://www.theguardian.com/world/2013/feb/15/hundreds-injured-meteorite-russian-city-chelyabinsk">happened at Chelyabinsk in February 2013</a><span> </span>– we would have heard all about it at the time.</p> <p>But because it happened in a remote part of the world, it went unremarked for more than three months, until details were unveiled at the<span> </span><a href="https://www.hou.usra.edu/meetings/lpsc2019/">50th Lunar and Planetary Science Conference</a><span> </span>this week, based on<span> </span><a href="https://cneos.jpl.nasa.gov/fireballs/">NASA’s collection of fireball data</a>.</p> <p>So where did this asteroid come from?</p> <p><strong>At risk from space debris</strong></p> <p>The Solar system is littered with material left over from the formation of the planets. Most of it is locked up in stable reservoirs – the Asteroid belt, the Edgeworth-Kuiper belt and the Oort cloud – far from Earth.</p> <p>Those reservoirs continually leak objects into interplanetary space, injecting fresh debris into orbits that cross those of the planets. The inner Solar system is awash with debris, ranging from tiny flecks of dust to comets and asteroids many kilometres in diameter.</p> <p>The vast majority of the debris that collides with Earth is utterly harmless, but our planet still<span> </span><a href="https://theconversation.com/target-earth-how-asteroids-made-an-impact-on-australia-92836">bears the scars of collisions</a><span> </span>with much larger bodies.</p> <p>The largest, most devastating impacts (like that which<span> </span><a href="https://theconversation.com/how-the-dinosaurs-went-extinct-asteroid-collision-triggered-potentially-deadly-volcanic-eruptions-112134">helped to kill the dinosaurs</a><span> </span>65 million years ago) are the rarest. But smaller, more frequent collisions also pose a marked risk.</p> <p>In 1908, in Tunguska, Siberia, a<span> </span><a href="http://www.bbc.com/earth/story/20160706-in-siberia-in-1908-a-huge-explosion-came-out-of-nowhere">vast explosion</a><span> </span>levelled more than 2,000 square kilometres of forest. Due to the remote location, no deaths were recorded. Had the impact happened just two hours later, the city of St Petersburg could have been destroyed.</p> <p>In 2013, it was a 10,000-tonne asteroid that<span> </span><a href="https://earthsky.org/space/meteor-asteroid-chelyabinsk-russia-feb-15-2013">detonated above the Russian city of Chelyabinsk</a>. More than 1,500 people were injured and around 7,000 buildings were damaged, but amazingly nobody was killed.</p> <p>We’re still trying to work out how often events like this happen. Our information on the frequency of the larger impacts is pretty limited, so estimates can vary dramatically.</p> <p>Typically, people argue that Tunguska-sized impacts happen<span> </span><a href="https://academic.oup.com/astrogeo/article/50/1/1.18/201316">every few hundred years</a>, but that’s just based on a sample of one event. The truth is, we don’t really know.</p> <p><strong>What can we do about it?</strong></p> <p>Over the past couple of decades, a concerted effort has been made to search for potentially hazardous objects that pose a threat before they hit Earth. The result is the<span> </span><a href="https://cneos.jpl.nasa.gov/stats/totals.html">identification of thousands of near-Earth asteroids</a><span> </span>upwards of a few metres across.</p> <p>Once found, the orbits of those objects can be determined, and their paths<span> </span><a href="https://cneos.jpl.nasa.gov/ca/">predicted into the future</a>, to see whether an impact is possible or even likely. The longer we can observe a given object, the better that prediction becomes.</p> <p>But as we saw with Chelyabinsk in 2013, and again in December, we’re not there yet. While the catalogue of potentially hazardous objects continues to grow, many still remain undetected, waiting to catch us by surprise.</p> <p>If we discover a collision is pending in the coming days, we can work out where and when the collision will happen. That happened for the first time in 2008 when astronomers discovered the tiny<span> </span><a href="https://cneos.jpl.nasa.gov/news/2008tc3.html">asteroid 2008 TC3</a>, 19 hours before it hit Earth’s atmosphere over northern Sudan.</p> <p>For impacts predicted with a longer lead time, it will be possible to work out whether the object is truly dangerous, or would merely produce a spectacular but harmless fireball (like 2008 TC3).</p> <p>For any objects that truly pose a threat, the race will be on to deflect them – to turn a hit into a miss.</p> <p><strong>Searching the skies</strong></p> <p>Before we can quantify the threat an object poses, we first need to know that the object is there. But finding asteroids is hard.</p> <p>Surveys scour the skies,<span> </span><a href="https://spaceguardcentre.com/what-are-neos/finding-and-observing-asteroids/">looking for faint star-like points moving against the background stars</a>. A bigger asteroid will reflect more sunlight, and therefore appear brighter in the sky - at a given distance from Earth.</p> <p>As a result, the smaller the object, the closer it must be to Earth before we can spot it.</p> <p>Objects the size of the Chelyabinsk and Bering Sea events (about 20 and 10 metres diameter, respectively) are tiny. They can only be spotted when passing very close to our planet. The vast majority of the time they are simply undetectable.</p> <p>As a result, having impacts like these come out of the blue is really the norm, rather than the exception!</p> <p>The Chelyabinsk impact is a great example. Moving on its orbit around the Sun, it approached us in the daylight sky - totally hidden in the Sun’s glare.</p> <p>For larger objects, which impact much less frequently but would do far more damage, it is fair to expect we would receive some warning.</p> <p><strong>Why not move the asteroid?</strong></p> <p>While we need to keep searching for threatening objects, there is another way we could protect ourselves.</p> <p>Missions such as<span> </span><a href="https://solarsystem.nasa.gov/missions/hayabusa/in-depth/">Hayabusa</a>,<span> </span><a href="http://www.hayabusa2.jaxa.jp/en/">Hayabusa 2</a><span> </span>and<span> </span><a href="https://www.asteroidmission.org/">OSIRIS-REx</a><span> </span>have demonstrated the ability to travel to near-Earth asteroids, land on their surfaces, and move things around.</p> <p>From there, it is just a short hop to being able to deflect them – to change a potential collision into a near-miss.</p> <p>Interestingly, ideas of asteroid deflection dovetail nicely with the<span> </span><a href="https://theconversation.com/mining-asteroids-could-unlock-untold-wealth-heres-how-to-get-started-95675">possibility of asteroid mining</a>.</p> <p>The technology needed to extract material from an asteroid and send it back to Earth could equally be used to alter the orbit of that asteroid, moving it away from a potential collision with our planet.</p> <p>We’re not quite there yet, but for the first time in our history, we have the potential to truly control our own destiny.</p> <p><em>Written by Jonti Horner. Republished with permission of <a href="https://theconversation.com/why-dangerous-asteroids-heading-to-earth-are-so-hard-to-detect-113845">The Conversation.</a></em></p>

Technology

Placeholder Content Image

Aussie geologists win a race against time to recover rare 4-billion-year-old meteorite

<p>Aussie geologists have found a meteorite estimated to be 4.5 billion years old.</p> <p>The team, from Perth’s Curtin University, found the 1.7 kilogram space rock in a remote part of Lake Eyre in South Australia, hours before heavy rains would have washed it away.</p> <p>The meteorite was spotted falling to Earth in late November and geologists have been trying to find it ever sense, at times feeling like looking for a needle in a haystack.</p> <p>The team eventually tracked the meteorite down where the team’s leader, geologist Phil Bland frantically dug it out by hand as a storm approached the site. </p> <p>“It was an amazing effort,” Professor Bland said in a press release from the university. “We got there by the skin of our teeth. This recovery will be the first of many and every one of those meteorites will give us a unique window into the formation of the solar system.”</p> <p><strong>Related links:</strong></p> <p><span style="text-decoration: underline;"><em><a href="/news/news/2016/01/clever-dog-performs-a-handstand/"><strong>Watch gorgeous toy poodle perform a perfect handstand</strong></a></em></span></p> <p><span style="text-decoration: underline;"><em><a href="/news/news/2016/01/alarm-clock-rug/"><strong>You won’t believe this new rug that’s an alarm clock</strong></a></em></span></p> <p><span style="text-decoration: underline;"><em><a href="/news/news/2016/01/make-your-smartphone-battery-last-longer/"><strong>How to make your smartphone battery last longer</strong></a></em></span></p>

News